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Abstract

In this paper, we study the e�ect of a small misplacement on the de¯ection response of the two-span column that
is subjected to transverse loading. Whereas the buckling modes of such and other structures have been investigated

thoroughly in the literature, the authors tend not to investigate the most important quantity, namely, the column's
response. This gap is attempted to be ®lled by the present study. It is remarkable that a 3% misplacement may lead
to a ®ve-fold enhancement of the response, and thus, location imperfections cannot be overlooked for safe

design. 7 2000 Published by Elsevier Science Ltd.
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1. Introduction

The study of the localization phenomenon in buckling of structures was pioneered by Pierre and Plaut

(1989). They uncovered a strong e�ect of a small misplacement in the location of an intermediate
support on the buckling behavior of two-span column with intermediate rotational spring. They
demonstrated that the buckling modes are considerably in¯uenced by the presence of the torsional
spring. Although the e�ect of the misplacement turned out to be insigni®cant on the buckling load itself,

the buckling modes were altered considerably, with attendant strong localization, i.e. displacements in
the buckling modes in one of the spans being signi®cantly larger than the other. A similar study was
conducted by Nayfeh and Hawwa (1999), Nayfeh and Hawwa (1994), who studied three- and four-span
columns. The case of N-span columns with a misplacement occurring in a single span was studied by Li

et al. (1995). The localization of buckling modes in the trusses was studied by Brasil and Hawwa (1995),
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Luongo and Pignataro (1998). In above studies, the buckling modes were studied extensively. For other
localization studies in buckling, the readers may consult with the special issue of the journal ``Chaos,
Solitons & Fractals'' (Xie, 2000) and references quoted therein.

The following consideration is worth mentioning: The buckling modes themselves, although extremely
important, constitute only an auxiliary information. They could be utilized for expanding the response
quantities in series in terms of these modes. Yet, the study of buckling modes only does not lead to
conclusion about the response quantities, the designer may be concerned with.

In this study, we address the e�ect of small misplacements in the same two-span column as considered
by Pierre and Plaut (1989) but now the column is subjected to transverse loading, in addition to axial
compressive forces. Signi®cant in¯uence of the misplacements is detected on the response, including, for
speci®c combinations of parameters and in some locations over a ®ve-fold enhancement of the response,
for just 3% of the misplacement in the middle support.

2. Structural model and governing equations

Let us consider a two-span column with an elastic torsional spring with sti�ness c connected at the
middle support. The e�ect of the spring is represented through its moment furnished at the column's
support B and of magnitude

MB � ÿcjB �1�
where jB denotes the slope at the middle support. The column is subjected to axial compressive load P.
The middle support of the column is misplaced with respect to its nominally symmetric location (Fig. 1),
d denotes the value of the misplacement. The misplacement is considered positive if it occurs to the right
of the middle support. The di�erential equations governing the transverse de¯ection of the beam, in
presence of external transverse load q�xi � reads

d2

dx 2
1

"
EI�x1 �d

2w1�x1�
dx 2

1

#
� P

d2w1�x1�
dx 2

1

� q�x1�, for 0Rx1R
L

2
� d �2�

Fig. 1. Structural model.
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d2

dx 2
2

"
EI�x2 �d

2w2�x2�
dx 2

2

#
� P

d2w2�x2�
dx 2

2

� q�x2�, for 0Rx2R
L

2
ÿ d �3�

where the two di�erent coordinate systems �Oxw�i �i � 1, 2� are adopted. The boundary conditions
associated with Eqs. (2) and (3) are

w1�0� � 0;
d2w1�x1�

dx 2
1

�����
0

� 0 �4a�

w2�L=2ÿ d� � 0;
d2w2�x2�

dx 2
2

�����
L=2ÿd
� 0 �4b�

representing the boundary conditions at the outer supports A and C. The four continuity conditions, at
the middle support B, read

w1�L=2� d� � 0; w2�0� � 0 �5a�

dw1�x1 �
dx1

����
L=2�d
� dw2�x2�

dx2

����
0

�5b�

EI
d2w2�x2�

dx 2
2

�����
0

ÿEId2w1�x1�
dx 2

1

�����
L=2�d
ÿcdw1�x1�

dx1

����
L=2�d
� 0 �5c�

Eq. (5c) represents the equilibrium between the external moment at the support B and the internal
bending moments of the column. In the following developments, it will be convenient to cast Eqs. (2)
and (5a)±(5c) in non-dimensional form. We introduce the non-dimensional local coordinates

xi � xi=L, �i � 1, 2� �6�

The di�erential equation governing the transverse de¯ection of the uniform column, will assume the
following form

d4w1�x1�
dx41

� l2 d2w1�x1 �
dx2

1

� �q�x1�, for 0Rx1Ra �7�

d4w2�x2�
dx42

� l2 d2w2�x2 �
dx2

2

� �q�x2�, for 0Rx2Rb �8�

Quantity l2 � PL 2=EI is a non-dimensional load parameter, while the non-dimensional lengths a and b
are de®ned as follows

a � 1=2� d, b � 1=2ÿ d, d � d=L �9�

where d is the non-dimensional misplacement. The right-hand side of Eqs. (7) and (8) is the variable
non-dimensional load
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�q � q�xi �L4=EI, �i � 1, 2� �10�

It is instructive to ®rst consider the e�ect of the misplacement on buckling modes. To this end, we ®x
�q�x� at zero. The general integrals of Eqs. (7) and (8) with �q�x� � 0 are

w1�x1� � A1 � B1x1 � C1 cos�lx1� �D1 sin�lx1� �11�

w2�x2� � A2 � B2x2 � C2 cos�lx2� �D2 sin�lx2� �12�
which satisfy the boundary conditions stated in Eqs. (11) and (12). Imposing the boundary conditions at
x � 0, we get A1 � C1 � 0, reducing the number of unknowns to six. They satisfy the following
equations

B1 a�D1 sin�la� � 0 �13a�

C2 � A2 � 0 �13b�

B2 �D2 lÿ B1 ÿD1l cos�la� � 0 �13c�

ÿC2l
2 �D1l

2 sin�la� � g
�
B1 �D1l cos�la�

�
� 0 �13d�

A2 � B2b� C2 cos�lb� �D2 sin�lb� � 0 �13e�

ÿC2l
2 cos�lb� ÿD2l

2 sin�lb� � 0 �13f�

where g � cL=EI represents the ratio between the torsional sti�ness c and the column's sti�ness EI. Eq.
(13d) is the result of substitution of Eqs. (11) and (12) into the following non-dimensional analog of Eq.
(5c)

d2w2�x2�
dx2

2

�����
0

ÿd2w1�x1�
dx2

1

�����
a

ÿgdw1�x1 �
dx1

����
a
� 0 �14�

Non-triviality conditions leads to the following characteristic equation for the parameter l

bl
ÿ
al2 � g

�
sin�al� cos�bl� ÿ

ÿ
g� l2

�
sin�al�sin�bl� � al

ÿ
bl2 � g

�
sin�bl� cos�al�

ÿ abgl 2 cos�al� cos�bl�

� 0 �15�

Eq. (15) coincides with Eq. (2) of Pierre and Plaut (1989). Fig. 2 shows the dependence of the non-
dimensional buckling load parameter l1 on the non-dimensional misplacement d for di�erent values of
the torsional spring ratio g: For large values of g, the critical buckling load tends to that of the
clamped±simply supported (C±S) column of L/2 with buckling load Pcl � 2:046p2EI=�L=2�2,
corresponding to l �

��������������
8:19p2
p

� 9:02: The values g � 600 and d � 0 correspond to the buckling load
8.89 that di�ers from the buckling load of the C±S column, l � 9:02 by 1.22%. For g41, the spans of
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the column act independently. This shows that the parameter g could be interpreted as a parameter of
decoupling: The greater g corresponds to a larger extent of decoupling.

Substitution of the solution l � lj of Eq. (15) into the algebraic linear system in Eqs. (13a)±(13f)
yields a set of six linearly dependent equations in six unknowns. After some algebra, we get, with A2 set
equal to unity, the following expressions

B1 � l2 sin�la�
g sin�la� � l2a sin�la� ÿ lga cos�la�

D1 � ÿ l2 sin�la�
g sin�la� � l2a sin�la� ÿ lga cos�la�

D2 � ÿb
�
B1 � lD1 cos�la�

�
ÿ cos�lb� � 1

sin�lb� ÿ lb

B2 � B1 � lD1cos�la� ÿ lD2, C2 � ÿA2 � ÿ1 �16�
The buckling modes read

w1�x1� � B1x1 �D1 sin
ÿ
ljx1

�
, 0Rx1Ra �17�

w2�x2� � 1ÿ cos
ÿ
ljx2

�� B2x2 �D2 sin
ÿ
ljx2

�
, 0Rx2Rb �18�

The buckling modes for di�erent values of the misplacement in the middle support are portrayed in
Fig. 3a and b. Fig. 3a portrays the ®rst buckling mode for misplacement of 1.5%, whereas in Fig. 3b
the misplacement constitutes 3%. We observe that for greater values of g, the buckling modes exhibit

Fig. 2. In¯uence of the misplacement d on the ®rst buckling load l1 for di�erent values of the coe�cient g:
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large di�erences in the magnitudes of the displacement in the ®rst and second spans. This pattern is an
essence of the localization phenomenon (Brasil and Hawwa, 1995; Pierre and Plaut, 1989; Li et al., 1995;
Nayfeh and Hawwa, 1994). On the other hand, as Fig. 2 suggests, the in¯uence of misplacements on the
classical buckling load is insigni®cant. The examination of Fig. 2 shows that large misplacements of the
order of 7±10% of the total length are needed to change the classical buckling load by 10%. However,
by considering the misplacement constituting a 10% of the column length (as done in some
determinietic and stochastic misplacement) we, de facto, treat another system rather than a slight
perturbation of the nominal system. It appears that the localization studies must concentrate on very
small misplacements.

Fig. 3a and b show the e�ect of the torsional sti�ness ratio g on the onset of localization. We observe

Fig. 3. First buckling mode for di�erent sti�ness coe�cients g and misplacements d � 0:015 (a) and d � 0:003 (b).
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that for small values of the ratio g the localization e�ect is absent. A strong localization is found for g �
600: Note that the aim of this section was auxiliary, to introduce the necessary equations and consider
the buckling modes. The objective of the next sections is to analyze the in¯uence of the misplacement on
the transverse response of the column subjected simultaneously to axial and transverse loads.

3. In¯uence of misplacements on transverse response

Let us consider the two-span column subjected to the simultaneous action of a transverse and axial
loads. The distributed load qi�xi � is assumed to vary linearly along the beam's axis

q1�x1 � � q1 ÿ x1 tan�j�, for 0Rx1RL=2� d �19a�

q2�x2 � � q1 ÿ �L=2� d� x2�tan�j� for 0Rx2RL=2ÿ d �19b�
with tan�j� � 2q1=L, so that it is anti-symmetric with respect to the mid cross-section. We introduce the
non-dimensional load �qi��qiL4�=�EI � �i � 1, 2�: The functions �qi�xi � �i � 1, 2� become

�q1�x1� � �q1 ÿ x1L
5 tan�j�=EI, for 0Rx1Ra �20a�

�q2�x2� � �q1 ÿ �a� x2�L5 tan�j�=EI, for 0Rx2Rb �20b�
The governing equations for the transverse displacement are

d4w1

dx41
� l2 d2w1

dx2
1

� �q1 ÿ x1L
5 tan�j�=EI, for 0Rx1Ra �21a�

d4w2

dx42
� l2 d2w2

dx2
2

� �q1 ÿ �x2 � a�L5 tan�j�=EI, for 0Rx2Rb �21b�

For the non-dimensional displacements yi�x� � wi�x�=L, we get

y1�x1� � A1 � B1x1 � C1 cos�lx1 � �D1 sin�lx1 � �
�q1x

2
1

2l2
ÿ tan�j�

6l2
x31 �22a�

y2�x2� � A2 � B2x2 � C2 cos�lx2 � �D2 sin�lx2 � �
�q1 ÿ a tan�j�

2l2
�x
2

2 ÿ
tan�j�
6l2

�x
3

2 �22b�

where the last two terms represent particular solutions. The eight constants in Eqs. (22a) and (22b) are
determined by satisfying the boundary conditions in Eqs. (5a), (5b) and (14). Requiring that the
transverse displacement in Eq. (22a) satis®es the boundary conditions at the leftmost end, Eq. (5a) we
get the expression of the constants

A1 � ÿ �q1=l
2, C1 � �q1=l

2 �23�
Requiring that the transverse displacement w2�x2� in Eq. (22b) vanishes at the middle support, x2 � 0,
we obtain C2 � ÿA2: The equations in the unknowns B1, D1, A2, B2 and D2 are
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B1a�D1 sin�la� � tan�j�
6l2

a3 ÿ �q1a
2

2l2
�
�
1ÿ cos�la�

� �q1

l4

B2 � lD2 ÿ B1 ÿD1l cos�la� � �q1 sin�la�
l3

� tan�j�a2

2l2
ÿ �q1a

l2

gB1 �
�
l2 sin�la� � gl cos�la�

�
D1 � A2l

2 � g
�

�q1

l3
sin�la� � tan�j�

2l2
a2 � �q1a

l2

�
ÿ �q1

l2
cos�la�

�
1ÿ cos�lb��A2 � B2b�D2 sin�lb� � tan�j�

6l2
b3 � a tan�j� ÿ �q1

2l2
b2

A2l
2 cos�lb� ÿD2l

2 sin�lb� � tan�j�
6l2

b� a tan�j� ÿ �q1

2l2
�24�

The solution for Eq. (24) is not reproduced here for the sake of brevity. If the determinant

D �

������������

a sin�la� 0 0 0
ÿ1 ÿl cos�la� 0 1 l
g gl cos�la� � g2 sin�la� l2 0 0
0 0

�
1ÿ cos�lb�� b sin�lb�

0 0 l2 cos�lb� 0 ÿl2 sin�lb�

������������
�25�

di�ers from zero, the response is unique. Condition D � 0 indicates buckling, with minimum buckling
load denoted by l1: We set l < l1 and investigate the response.

The displacement functions are represented in Fig. 4a±d for di�erent values of the misplacement d
and several values of the applied load l: In Fig. 4a, l is ®xed at 0:25l1; the e�ect of the misplacement is
observed to be insigni®cant. In Fig. 4b, the applied axial load l is set to the 43.5% of the classical
buckling load l1: We observe that the misplacements cause a signi®cant alteration in the response
pattern. In the ideal structure, without a misplacement, the displacement function, shown by the solid
line, has two zeroes (denoted by x10 and x20� in addition to the end points and intermediate support
location. Yet, with misplacements constituting 1% or more of the length L, these additional zeroes
disappear. The maximum non-dimensional displacement in the ideal system, in the ®rst span, equals
0.0008; whereas for 1% misplacement, the maximum displacement equals 0.0016, constituting a two-fold
increase; for 2% misplacement this enhancement ratio constitutes 2.65. Finally, for 3% misplacement
the increase is 5.5-fold. For the value of the axial load l � 0:47l1, the presence of an additional zero is
introduced in the displacement function of the imperfect column in one of the spans. On the other hand,
the perfect structure does not have any zeroes other than in the location of the supports. An imperfect
column subjected to axial load equal to 75% of the classical buckling load shows a behavior that is only
slightly di�erent from the ideal system (Fig. 4d). Analogous behavior is also recorded for l � 0:25l1
(Fig. 4a). An important di�erence between Fig. 4a and d lies in the following: In Fig. 4a, the response
of the imperfect structure exceeds that of the ideal one; whereas in Fig. 4d, the behavior is opposite.

The maximum values of the peak response ratio Z de®ned as
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Zj �
max
xi
jyimperfect

j

ÿ
xj
�j

max
xi
jyideal

j

ÿ
xj
�j , j � 1, 2 �26�

with j � j representing the absolute value operator, are also reported in Fig. 4a±d, j is the span number.
The maximum peak ratio occurs in the ®rst span for l � 0:43l1 and in the second span for l � 0:435l1:

Whereas for the anti-symmetric loading, the peak response ratio may reach 5.5, in the case of
symmetric loaded, or non-symmetric, partially loaded column, the misplacement of 3% provides only
about 30% increment of the response compared with the ideal system. Still, such an e�ect cannot be
overlooked, for percentagewise increase of the response is about 10 times greater than the
percentagewise imperfection.

The peak response ratios Zj de®ned in Eq. (26) are depicted for the case of anti-symmetric transverse
load �q�x� in Fig. 5, as functions of the non-dimensional load ratio l=l1: The global abscissa x is
identi®ed by means of the relation

x � x1 � hx1 ÿ ai0x2

hx1 ÿ ai0 � 1 if x1ra

Fig. 4. Displacement functions y�x� for di�erent values of misplacements d and axial load l subjected to anti-symmetric transverse

load with �q1 � ÿ �q2 � 8:
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hx1 ÿ ai0 � 0 elsewhere �27�
where h�i0 in Eq. (27) is denoted as singularity function. It is seen that the peak response ratio reaches
values close to Z2 � 15 in the neighborhood of the non-dimensional ratio l=l1 � 0:43: The e�ect of the
misplaced middle support may lead to peak response ratios smaller than unity for values of the ratio
l=l1r0:455: Thus, the misplacement may have a bene®cial e�ect on the response of the system.

4. E�ect of misplacement on response in presence of axial, eccentric and transverse loads

Consider now a two-span column that is subjected to an axial load P applied with an eccentricity e
from the column's axis as well as to a transverse load that is anti-symmetric with respect to the mid-
span as in Eqs. (19a) and (19b). The e�ect of the eccentric load is equivalent to an external bending
moment Me � Pe applied at the outer supports A and C. The di�erential equation governing the
transverse displacement of the column are given by Eqs. (7) and (8). The boundary conditions at the
outermost supports A and C, respectively, read

y1�0� � 0 and
d2y1�x1�

dx2
1

�����
0

� l2e �28a�

Fig. 5. Peak response ratios Z1�l=l1� and Z2�l=l1� for anti-symmetrically loaded column with �q1 � ÿ �q2 � 8:
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y2�b� � 0 and
d2y2�x2�

dx2
2

�����
b

� l2e, e � e=L �28b�

The continuity conditions at support B are represented by the non-dimensional counterpart of Eqs. (5a),
(5b) and (14). Imposing the boundary conditions at the leftmost support A on the general solution of
Eq. (5a), we get the values of the constants A1 and C1

A1 � C1 � e �29�

leading to the solution of Eq. (5a) in terms of the remaining two constants B1 and D1

y1�x� � e
�
1ÿ cos�lx1�

�� B1x1 �D1 sin�lx1� �
�q1

2l2
x2
1 ÿ

tan�j�
6l2

x31 �30�

The general expression of the non-dimensional transverse displacement y2�x� is

y2�x� � A2 � B2x2 � C2 cos�lx� �D2 sin
ÿ
�lx
�
� �q1 ÿ a tan�j�

2l2
x2
2 ÿ

tan�j�
6l2

x32 �31�

Satisfying the continuity condition in Eq. (5b), we get A2 � ÿC2: Requiring that the functions in Eqs.
(30) and (31) satisfy the remaining boundary and continuity conditions, we get ®ve equations in the ®ve
unknowns B1, D1, A2, B2, C2 and D2

B1a�D1 sin�la� � e
�
cos�la� ÿ 1

�
� tan�j�

6l2
a3 ÿ �q1a

2

2l2
� �q1

l4
�
1ÿ cos�la�

�

B2 �D2lÿ B1 ÿ lD1 cos�la� � ÿle sin�la� � �q1 sin�la�
l3

� tan�j�a2

2l2
ÿ �q1a

l2

l2A2 � gB1 �D1

�
l2 sin�la� � lg cos�la�

�
� l2e cos�la� ÿ lge sin�la� � g

�
�q1

l3
sin�la� � tan�j�

2l2
� �q1a

l2

�
ÿ �q1

l2
cos�la�

�
1ÿ cos�lb��A2 � B2b�D2 sin�lb� � tan�j�

6l2
b3 � a tan�j� ÿ �q1

2l2
b2

l2A2 cos�lb� ÿD2l
2 sin�lb� � el2 � tan�j�

6l2
b� a tan�j� ÿ �q1

2l2
�32�

The solution of the system of equations in Eq. (32) is straightforward and it will not be reproduced here
for the sake of brevity. The e�ect of the misplaced support on the displacement response is deduced
from Fig. 6a±d. In Fig. 6a, the axial load has been set at l � 0:43l1: It is seen that the e�ect of the
misplacement is insigni®cant. In Fig. 6b, we observe some qualitative magni®cation of the response.
Namely, the response function of the perfect structure has an additional zero in the second span. Its
counterpart, for d � 0:03, does not have an additional zero. We conclude that the e�ect of the
misplacement is qualitative by change the character of the response. Observing the patterns in Fig. 6c
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and d, we note that increments in the applied axial load cause the additional node in the transverse
response to move towards the external support A.

The e�ect of the misplacement on the maximum response of the column is deduced from Fig. 7a and
b where the peak response ratios Zj, introduced in Eq. (26), are plotted against l=l1 for various values
of the misplacement d: Fig. 7a is associated with the maximum peak ratio in the ®rst span, whereas
Fig. 7b is portraying the peak response ratio in the second span. The response of the imperfect structure
is about 2.35 times greater than its counterpart in the ideal system, in the ®rst span. On the other hand,
the examination of Fig. 6b yields that in the second span the peak response ratio Z2 is over 2.9 for l �
0:64l1:

In order to study further the e�ect of the misplacement d over the response of the column, we
introduce the following non-dimensional ratios (Fig. 8)

gp �

0BBB@
max
x2

��y2�x2 ���
max
x1

��y1�x1 ���
1CCCA

perfect

; gi �

0BBB@
max
x2

��y2�x2���
max
x1

��y1�x1���
1CCCA

imperfect

�33�

Note that the ratios de®ned in Eq. (33) di�er from Eq. (26); gp and gi represent the degree of asymmetry
in the response. The value l was ®xed at 0:9l1: We observe that the response of the column is highly

Fig. 6. Displacement function y�x� for di�erent misplacements d and applied axial load for the column subjected to axially eccentric

and transverse load with �q1 � ÿ �q2 � 4 and e � 0:015:
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Fig. 7. Peak response ratios Z1�l=l1� and Z2�l=l1� for eccentrically and anti-symmetrically loaded column with �q1 � ÿ �q2 � 4 and

e � 0:015:

M. Zingales, I. Elishako� / International Journal of Solids and Structures 37 (2000) 6739±6753 6751



concentrated in the second span, whereas the ®rst span experiences a nearly vanishing transverse
displacement. The maximum response in the second span is 4.89 times than that in the ®rst span, for the
perfect system. Yet, the second span's maximum response turns out to be 16.8 times greater than the
displacement in the ®rst one when the misplacement d � 0:03; the asymmetry in the responses was
increased over three times. Thus, we establish a localization pattern in the transverse response of the
column.

5. Conclusions

In this study, we investigate the e�ect of misplacement in the location of the intermediate support on
the response of a two-span column that is both axially and transversally loaded. The aim is to determine
whether a slight disorder may lead to a large change in the response in contrast to the perfect structure.
The investigation has shown signi®cant in¯uence of the misplacements in the transverse displacement of
the column. Some con®gurations of the external transverse load, combined with the misplacements,
cause signi®cant change in both the qualitative and the quantitative dependence including a localization
of the response. These conclusions were derived for a model structure, with attendant analytical
simplicity. Yet rich variety of behaviors was uncovered. This work and its companion (Elishako� and
Zingales, 2000) were inspired when the second author was reading the Rabbi Arieh Kaplan's translation
(1981) of the Torah (``the Bible''): ``[All the beams] must be exactly next to each other on the bottom.
[Every pair] shall also be [joined] together evenly on top with a [square] ring. This shall also be done
with the two [beams] on the top corners,'' (Exodus, 26:24). The considerations pertinent to this study
followed from the idea, that the Tabernacle would have been subjected to di�erent loading conditions,
during the periods of its enactment, daily services and transportation periods. Hence the spacing
``evenly' (i.e. lack of misplacements) would lead to the lack of the localized response. Hence the

Fig. 8. Displacement function y�x� with l � 0:9l1 for the column subjected to axially eccentric and transverse load �q1 � ÿ �q2 � 4

and e � 0:015:
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conclusion was made by the second author that the response, rather than the mode shapes, was
important quantity to investigate.

The companion study (Elishako� and Zingales, 2000) in the vibration context, is underway and will
be reported elsewhere.
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